Simultaneous Sampling of Flow and Odorants by Crustaceans can Aid Searches within a Turbulent Plume
نویسندگان
چکیده
Crustaceans such as crabs, lobsters and crayfish use dispersing odorant molecules to determine the location of predators, prey, potential mates and habitat. Odorant molecules diffuse in turbulent flows and are sensed by the olfactory organs of these animals, often using a flicking motion of their antennules. These antennules contain both chemosensory and mechanosensory sensilla, which enable them to detect both flow and odorants during a flick. To determine how simultaneous flow and odorant sampling can aid in search behavior, a 3-dimensional numerical model for the near-bed flow environment was created. A stream of odorant concentration was released into the flow creating a turbulent plume, and both temporally and spatially fluctuating velocity and odorant concentration were quantified. The plume characteristics show close resemblance to experimental measurements within a large laboratory flume. Results show that mean odorant concentration and it's intermittency, computed as dc/dt, increase towards the plume source, but the temporal and spatial rate of this increase is slow and suggests that long measurement times would be necessary to be useful for chemosensory guidance. Odorant fluxes measured transverse to the mean flow direction, quantified as the product of the instantaneous fluctuation in concentration and velocity, v'c', do show statistically distinct magnitude and directional information on either side of a plume centerline over integration times of <0.5 s. Aquatic animals typically have neural responses to odorant and velocity fields at rates between 50 and 500 ms, suggesting this simultaneous sampling of both flow and concentration in a turbulent plume can aid in source tracking on timescales relevant to aquatic animals.
منابع مشابه
Numerical simulations of odorant detection by biologically inspired sensor arrays.
The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the inform...
متن کامل3D Simulation of the Effects of the Plasma Actuator on the Unsteady, Turbulent and Developing Flow within a Circular Duct
The objective of current paper is 3D simulation of turbulent, developing flow and unsteady within a circular duct in presence of the body force vector persuaded by Dielectric barrier discharge (DBD) plasma actuator inside the surface of geometry for the first time. This article aims at investigating of applying plasma actuator to control separation with special arrangement of electrodes. For th...
متن کاملThe fluid mechanics of arthropod sniffing in turbulent odor plumes.
Many arthropods capture odorant molecules from the environment using antennae or antennules bearing arrays of chemosensory hairs. The penetration of odorant-carrying water or air into the spaces between these chemosensory hairs depends on the speed at which they are moved through the surrounding fluid. Therefore, antennule flicking by crustaceans and wing fanning by insects can have a profound ...
متن کاملChemosensory guidance cues in a turbulent chemical odor plume
The characteristics of chemical odor plumes released into a turbulent open channel flow are evaluated in the context of chemical plume tracking. The objective is to assess the availability and usefulness of chemosensory cues to animals, such as benthic crustaceans, attempting to orient in the plume. Releasing fluorescent dye into the fully developed turbulent boundary layer of a large laborator...
متن کاملThe spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume.
Odors are dispersed across aquatic habitats by turbulent water flow as filamentous, intermittent plumes. Many crustaceans sniff (take discrete samples of ambient water and the odors it carries) by flicking their olfactory antennules. We used planar laser-induced fluorescence to investigate how flicking antennules of different morphologies (long antennules of spiny lobsters, Panulirus argus; sho...
متن کامل